The generator matrix

 1  0  1  1  1  1  1  1  0  1  3  1  1  1 X+3  1  1 2X+3  1  1 2X  1 X+3  1  1  1  1  1  1 2X  1 X+6 2X  1  1  1  1  1  1  1 2X  1  1  1  1  1  1  0  1  1  1 X+3  1 X+3  3  1  1 X+6  1  1 X+3  1  1 2X+3  1  1 X+6  1  1  1  1  1  X  X  0  3  0 2X+3 2X+6  1
 0  1  1  8 X+3 X+2 2X+4 2X  1 X+4  1  2 2X+8  3  1 2X+1 2X+3  1 2X+4 2X  1 X+8  1  8  4 2X+8  0  1 X+3  1  X  1  1 X+2 X+4 2X X+1  0 2X+3 2X+2  1 X+1  8  X  1  4  4  1 2X+3 2X+4 X+1  1 2X+8  1  1 2X+7 X+4  1 2X+1 X+2  1 2X+3 2X+1  1 2X+7  1  1 X+1 2X+4 2X+1 X+4 X+3  1 2X+3  1  1  1  1  1 X+2
 0  0 2X  0  3  3  6  0 2X+3 X+3 X+6 X+3 2X+3 X+6 2X+6  X  X X+3 2X+3 2X+6 2X+3 X+6  3 2X  0  6 2X+6  X 2X+6 2X  X X+6  3 2X+3 X+3 2X+6 2X+6 2X+3  X X+6  0  6  3 X+6 X+3 2X+3  6  0 2X  0 2X  3  3 2X+3  X  3  0 2X+6 2X 2X+6  0  3  X  X X+6 2X+6  X 2X+3  6  3 2X+3 X+6  6 2X+3 X+3 X+6 2X+6  3  0  0
 0  0  0  6  6  0  3  3  6  6  3  3  6  3  0  0  6  0  3  0  3  0  6  3  6  0  6  0  0  6  3  6  0  0  0  6  0  3  3  6  3  3  0  0  3  3  0  3  3  6  6  0  3  6  0  3  0  3  0  3  0  6  6  6  6  6  0  0  0  6  6  6  6  3  0  6  0  3  6  6

generates a code of length 80 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 153.

Homogenous weight enumerator: w(x)=1x^0+1162x^153+342x^154+936x^155+2262x^156+792x^157+1764x^158+2610x^159+738x^160+1710x^161+2712x^162+630x^163+1170x^164+1488x^165+396x^166+234x^167+468x^168+18x^169+18x^170+130x^171+36x^174+18x^177+26x^180+12x^183+8x^189+2x^198

The gray image is a code over GF(3) with n=720, k=9 and d=459.
This code was found by Heurico 1.16 in 65 seconds.